Inhibition of HIV‐1 Replication in Human Lymphoid Tissues Ex Vivo by Measles Virus
Author(s) -
JeanCharles Grivel,
Mayra L. Garcia,
William J. Moss,
Leonid Margolis
Publication year - 2005
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/430743
Subject(s) - measles virus , chemokine , biology , virology , viral replication , virus , ex vivo , lymphatic system , immunology , cxcr4 , morbillivirus , in vivo , immune system , measles , vaccination , microbiology and biotechnology
Human immunodeficiency virus (HIV) type 1 replication and disease progression are enhanced by various pathogens in coinfected individuals. However, acute infection with measles virus (MV) has been found to suppress HIV-1 replication in coinfected children. We investigated the mechanisms of this phenomenon using human lymphoid tissues coinfected ex vivo with HIV-1 and MV. MV inhibited both CXCR4-tropic (X4) and CCR5-tropic (R5) HIV-1, but the inhibitory effect was particularly profound for R5 virus, which transmits infection and dominates the early stages of HIV-1 disease. MV inhibits the replication of R5 HIV-1 in coinfected tissues by up-regulation of the CC chemokine RANTES, a well-known inhibitor of R5 HIV-1 infection, and this up-regulation is augmented in tissues coinfected with R5 HIV-1. Deciphering the molecular mechanisms by which MV and other pathogens alter local cytokine/chemokine networks and cause tissue microenvironments to become detrimental to HIV-1 may significantly contribute to the development of effective anti-HIV therapies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom