z-logo
open-access-imgOpen Access
High-Resolution Spectroscopy of the Transiting Planet Host Star TrES-1
Author(s) -
A. Sozzetti,
David Yong,
Guillermo Torres,
David Charbonneau,
David W. Latham,
Carlos Allende Prieto,
Timothy M. Brown,
Bruce W. Carney,
John B. Laird
Publication year - 2004
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/426864
Subject(s) - physics , planet , exoplanet , astrophysics , photometry (optics) , radius , astronomy , effective temperature , planetary system , spectroscopy , stars , computer security , computer science
We report on a spectroscopic determination of the stellar parameters andchemical abundances for the parent star of the transiting planet TrES-1. Basedon a detailed analysis of iron lines in our Keck and HET spectra we derive$T_\mathrm{eff} = 5250\pm 75$ K, $\log g = 4.6\pm 0.2$, and [Fe/H] $= 0.00\pm0.09$. By measuring the \ion{Ca}{2} activity indicator and by putting usefulupper limits on the Li abundance we constrain the age of TrES-1 to be $2.5\pm1.5$ Gyr. By comparing theoretical stellar evolution models with theobservational parameters we obtain $M_\star = 0.89\pm 0.05$ $M_\odot$, and$R_\star = 0.83\pm 0.05$ $R_\odot$. Our improved estimates of the stellarparameters are utilized in a new analysis of the transit photometry of TrES-1to derive a mass $M_p = 0.76\pm 0.05$ $M_\mathrm{J}$, a radius $R_p =1.04^{+0.08}_{-0.05}$ $R_\mathrm{J}$, and an inclination $i =89^\circ.5^{+0.5}_{-1.3}$. The improved planetary mass and radius estimatesprovide the grounds for new crucial tests of theoretical models of evolutionand evaporation of irradiated extrasolar giant planets.Comment: 14 pages, 3 figures, Astrophysical Journal Letters, accepte

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom