z-logo
open-access-imgOpen Access
Phosphorylation‐Independent Effects of CagA during Interaction betweenHelicobacter pyloriand T84 Polarized Monolayers
Author(s) -
Sahar H. ElEtr,
Anne Mueller,
Lucy S. Tompkins,
Stanley Falkow,
D. Scott Merrell
Publication year - 2004
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/424526
Subject(s) - caga , helicobacter pylori , pathogenicity island , biology , gene , phosphorylation , mutant , virulence , cell , microbiology and biotechnology , genetics
To extend our knowledge of host-cell targets of Helicobacter pylori, we characterized the interaction between H. pylori and human T84 epithelial cell polarized monolayers. Transcriptional analysis by use of human microarrays and a panel of isogenic H. pylori mutants revealed distinct responses to infection. Of the 670 genes whose expression changed, most (92%) required the cag pathogenicity island (PAI). Although altered expression of many genes was dependent on CagA (80% of the PAI-dependent genes), expression of >30% of these host genes occurred independent of the phosphorylation state of the CagA protein. Similarly, we found that injected CagA localized to the apical surface of cells and showed preferential accumulation at the apical junctions in a phosphorylation-independent manner. These data suggest the presence of distinct functional domains within the CagA protein that play essential roles in protein targeting and alteration of host-cell signaling pathways.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom