Molecular Diagnosis of Resistance to Antimalarial Drugs during Epidemics and in War Zones
Author(s) -
Abdoulaye Djimdé,
Amagana Dolo,
Amed Ouattara,
Sira Diakité,
Christopher V. Plowe,
Ogobara K. Doumbo
Publication year - 2004
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/422758
Subject(s) - dhps , malaria , chloroquine , sulfadoxine , plasmodium falciparum , pyrimethamine , virology , drug resistance , biology , medicine , immunology , genetics
Plasmodium falciparum mutations pfcrt K76T and the dhfr/dhps "quintuple mutant" are molecular markers of resistance to chloroquine and sulfadoxine-pyrimethamine, respectively. During an epidemic of P. falciparum malaria in an area of political unrest in northern Mali, where standard efficacy studies have been impossible, we measured the prevalence of these markers in a cross-sectional survey. In 80% of cases of infection, pfcrt K76T was detected, but none of the cases carried the dhfr/dhps quintuple mutant. On the basis of these results, chloroquine was replaced by sulfadoxine-pyrimethamine in control efforts. This example illustrates how molecular markers for drug resistance can provide timely data that inform malaria-control policy during epidemics and other emergency situations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom