z-logo
open-access-imgOpen Access
Transmission ofYersinia pestisfrom an Infectious Biofilm in the Flea Vector
Author(s) -
Clayton O. Jarrett,
Eszter Deák,
Karen E. Isherwood,
Petra C. F. Oyston,
Elizabeth R. Fischer,
Adeline R. Whitney,
Scott D. Kobayashi,
Frank R. DeLeo,
B. Joseph Hinnebusch
Publication year - 2004
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/422695
Subject(s) - yersinia pestis , biofilm , microbiology and biotechnology , biology , flea , virology , virulence , bacteria , gene , genetics , ecology
Transmission of plague by fleas depends on infection of the proventricular valve in the insect's foregut by a dense aggregate of Yersinia pestis. Proventricular infection requires the Y. pestis hemin storage (hms) genes; here, we show that the hms genes are also required to produce an extracellular matrix and a biofilm in vitro, supporting the hypothesis that a transmissible infection in the flea depends on the development of a biofilm on the hydrophobic, acellular surface of spines that line the interior of the proventriculus. The development of biofilm and proventricular infection did not depend on the 3 Y. pestis quorum-sensing systems. The extracellular matrix enveloping the Y. pestis biofilm in the flea appeared to incorporate components from the flea's blood meal, and bacteria released from the biofilm were more resistant to human polymorphonuclear leukocytes than were in vitro-grown Y. pestis. Enabling arthropod-borne transmission represents a novel function of a bacterial biofilm.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom