z-logo
open-access-imgOpen Access
Ability of Blood Group A–Active Glycosphingolipids to Act asEscherichia coliHeat‐Labile Enterotoxin Receptors in HT‐29 Cells
Author(s) -
Estela M. Galván,
Claudio Diema,
German A. Roth,
Clara G. Monferrán
Publication year - 2004
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/383349
Subject(s) - receptor , cholera toxin , helix pomatia , enterotoxin , heat labile enterotoxin , escherichia coli , biochemistry , biology , glycosphingolipid , microbiology and biotechnology , chemistry , endocrinology , ecology , snail , gene
We examined the ability of blood group A-active glycoconjugates to act as receptors for Escherichia coli heat-labile type I enterotoxin (LT-I) in HT-29 cells. These cells contained ~4 times more specific binding sites for LT-I than for cholera toxin (CT). Binding of LT-I could not be blocked by the B subunit of CT (CT-B), indicating the existence of LT-I receptors in addition to the glycosphingolipid GM1. LT-I was able to increase levels of cyclic adenosine monophosphate (AMP), even in the presence of CT-B. Helix pomatia and anti-blood group A antibody caused a dose-dependent inhibition of binding of LT-I to cells and production of cyclic AMP. LT-I recognized several complex blood group A-active glycosphingolipids from cells, and this interaction was also interfered with by H. pomatia. Treatment of cells with D,L-threo-1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol diminished surface expression of blood group A-active glycosphingolipids and binding of LT-I to non-GM1 receptors. These observations suggest that blood group A-active glycosphingolipids can function as alternative receptors for LT-I in HT-29 cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom