On the Importance of Gas Flow through Porous Bodies for the Formation of Planetesimals
Author(s) -
Gerhard Wurm,
Georgi Paraskov,
Oliver Krauß
Publication year - 2004
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/383122
Subject(s) - planetesimal , physics , drag , porosity , flow (mathematics) , porous medium , mechanics , protoplanetary disk , astrophysics , planet , geology , geotechnical engineering
Planetesimals and their precursors in protoplanetary disks are very porous. Thus, a gas flow around such bodies will be accompanied by gas flow through them. We calculate how this gas flow will influence the impact of a small body on a body larger than 1 m in size. On the front side of a large body (target) with high porosity there is a boundary layer that is characterized by a gas flow toward the surface. We find that under typical conditions with respect to collisions in protoplanetary disks, fragments of a collision will stay inside this boundary layer. These fragments will return to the target by gas drag. Net growth of the larger body in these secondary collisions will occur. The mechanism works for all sizes up to planetesimal size. This supports the idea that planetesimals (kilometer-sized bodies) build up from collisions of smaller bodies. Subject headings: hydrodynamics — planetary systems: protoplanetary disks — planets and satellites: formation — solar system: formation
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom