In Vitro Evaluation of Cyanovirin‐N Antiviral Activity, by Use of Lentiviral Vectors Pseudotyped with Filovirus Envelope Glycoproteins
Author(s) -
Laura G. Barrientos,
Fátima Lasala,
Joaquín R. Otero,
Anthony Sanchez,
Rafaël Delgado
Publication year - 2004
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/382658
Subject(s) - virology , biology , in vitro , glycoprotein , viral envelope , viral entry , virus , transduction (biophysics) , in vivo , hela , ebola virus , microbiology and biotechnology , viral replication , biochemistry
Cyanovirin-N (CV-N) has been shown to inhibit Ebola Zaire virus (EboZV) infection, both in vitro and in vivo, through its ability to bind to oligomannoses-8/9 on the EboZV surface glycoprotein (GP). Here, we report the in vitro potency of CV-N to inhibit EboZV GP- and Marburg virus GP-pseudotyped viruses (EC50 approximately 40-60 nmol/L and approximately 6-25 nmol/L, respectively) from mediating gene transduction into HeLa cells. In addition, we provide evidence that CV-N can effectively inhibit DC-SIGN-mediated EboZV infection. Our data emphasize both the utility of GP-pseudotyped vectors in the assessment of compounds that affect cell entry by filovirus and the use of CV-N as a reagent for the probing of carbohydrate-dependent interactions at viral entry.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom