z-logo
open-access-imgOpen Access
Increased Frequency of Genomic Alterations inStaphylococcus aureusduring Chronic Infection Is in Part Due to Phage Mobilization
Author(s) -
Christiane Goerke,
Saskia Matias y Papenberg,
Simone Dasbach,
Klaus Dietz,
Rita Ziebach,
Barbara C. Kahl,
Christiane Wolz
Publication year - 2004
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/381502
Subject(s) - staphylococcus aureus , genome , biology , pulsed field gel electrophoresis , clone (java method) , microbiology and biotechnology , staphylococcal infections , antibiotics , genetics , gene , bacteria , genotype
We assessed the nature and frequency of genome alterations in Staphylococcus aureus during chronic lung infection in patients with cystic fibrosis (CF) and during colonization of the nares in healthy individuals. Only individuals harboring the same S. aureus clone on consecutive samplings were included in the present study. Clone definition was based on pulsed-field gel electrophoresis (PFGE) analysis. Minor fragment variations in consecutive clones were interpreted as genome alterations. The frequency of genome alterations was significantly higher in S. aureus derived from patients with CF (mean time, 1.03 years) than in isolates derived from healthy individuals (mean time, 13.4 years). In total, 19 S. aureus strain pairs showing genome alterations were available for molecular analysis to clarify the nature of recombinational events in the host environment. In 8 cases, genome alteration could be linked to phage mobilization. Phage conversion of beta-toxin production was evident in 7 pairs. In 1 strain pair, changes in the PFGE pattern were accompanied by deletion of a phage similar to ETA. Obviously, phage mobilization plays an important role in vivo. During long-term lung infection in patients with CF, the specific host response and/or the regular exposure to antibiotics exercises strong selective pressure on the pathogen. Genome plasticity may facilitate the adaptation to various host conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom