z-logo
open-access-imgOpen Access
Multiple Human Herpesvirus–8 Infection
Author(s) -
Mohammed M. Beyari,
Tim Hodgson,
Rachelle Cook,
W. Kondowe,
Elizabeth Molyneux,
Crispian Scully,
C. G. Teo,
Stephen Porter
Publication year - 2003
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/377504
Subject(s) - biology , genotype , virology , superinfection , nucleic acid sequence , orfs , polymerase chain reaction , open reading frame , genetics , sequence analysis , subgenomic mrna , virus , genetic variation , dna , genome , peptide sequence , gene
In Malawian patients with Kaposi sarcoma (KS) and their relatives, we investigated nucleotide-sequence variation in human herpesvirus-8 (HHV-8) subgenomic DNA, amplified from oral and blood samples by use of polymerase chain reaction. Twenty-four people had amplifiable HHV-8 DNA in >1 sample; 9 (38%) were seropositive for human immunodeficiency virus type 1, 21 (88%) were anti-HHV-8-seropositive, and 7 (29%) had KS. Sequence variation was sought in 3 loci of the HHV-8 genome: the internal repeat domain of open-reading frame (ORF) 73, the KS330 segment of ORF 26, and variable region 1 of ORF K1. Significant intraperson/intersample and intrasample sequence polymorphisms were observed in 14 people (60%). For 3 patients with KS, intraperson genotypic differences, arising from nucleotide sequence variations in ORFs 26 and K1, were found in blood and oral samples. For 2 other patients with KS and for 9 people without KS, intraperson genotypic and subgenotypic differences, originating predominantly from ORF K1, were found in oral samples; for the 2 patients with KS and for 4 individuals without KS, intrasample carriage of distinct ORF K1 sequences also were discernible. Our findings imply HHV-8 superinfection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom