Fast Magnetic Reconnection via Jets and Current Microsheets
Author(s) -
P. G. Watson,
I. J. D. Craig
Publication year - 2003
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/376566
Subject(s) - magnetic reconnection , physics , current sheet , astrophysics , plasma , current (fluid) , scaling , corona (planetary geology) , computational physics , magnetohydrodynamics , mechanics , astrobiology , geometry , nuclear physics , thermodynamics , mathematics , venus
Numerical simulations of highly nonlinear magnetic reconnection provide evidence of ultrathin current microsheets. These small-scale sheets are formed by strong exhaust jets from a primary large-scale current layer. The overall size of the secondary microsheet is determined by the thickness of the primary sheet. Preliminary scalings show that the thickness of the microsheet varies linearly with the plasma resistivity. This scaling suggests that microsheets may provide fast reconnection sites in magnetically complex plasmas such as the solar corona and planetary magnetospheres
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom