Lack of Detectable Human Immunodeficiency Virus Type 1 Superinfection during 1072 Person‐Years of Observation
Author(s) -
Matthew J. Gonzales,
Eric Delwart,
SooYon Rhee,
Rose Tsui,
Andrew Zolopa,
Jonathan Taylor,
Robert W. Shafer
Publication year - 2003
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/376534
Subject(s) - superinfection , virology , biology , sequence (biology) , reverse transcriptase , virus , gene , human immunodeficiency virus (hiv) , protease , genetics , polymerase chain reaction , enzyme , biochemistry
We examined consecutive protease (PR) and reverse transcriptase (RT) sequences from human immunodeficiency virus (HIV) type 1-infected individuals, to distinguish changes resulting from sequence evolution due to possible superinfection. Between July 1997 and December 2001, >/=2 PR and RT samples from 718 persons were sequenced at Stanford University Hospital. Thirty-seven persons had highly divergent sequence pairs characterized by a nucleotide distance of >4.5% in PR or >3.0% in RT. In 16 of 37 sequence pairs, divergence resulted from the loss of mutations during a treatment interruption or from the gain of mutations with reinstitution of treatment. tat and/or gag sequencing of HIV-1 from cryopreserved plasma samples could be performed on 15 of the 21 divergent isolate pairs from persons without a treatment interruption. The sequences of these genes, unaffected by selective drug pressure, were monophyletic. Although HIV-1 PR and RT genes from treated persons may become highly divergent, these changes usually are the result of sequence evolution, rather than superinfection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom