Optical Monitoring and Treatment of Potentially Lethal Wound Infections In Vivo
Author(s) -
Michael R. Hamblin,
Touqir Zahra,
Christopher H. Contag,
Albert T. McManus,
Tayyaba Hasan
Publication year - 2003
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/375244
Subject(s) - in vivo , medicine , intensive care medicine , microbiology and biotechnology , biology
We report on the use of optical techniques to monitor and treat Pseudomonas aeruginosa wound infections in mice. Bioluminescent bacteria transduced with a plasmid containing a bacterial lux gene operon allow the infection in excisional mouse wounds to be imaged by use of a sensitive charge-coupled device camera. Photodynamic therapy (PDT) targeted bacteria, by use of a polycationic photosensitizer conjugate, which is designed to penetrate the gram-negative cell wall and was topically applied to the wound and was followed by red-light illumination. There was a rapid light dose-dependent loss of luminescence, as measured by image analysis, in the wounds treated with conjugate and light, a loss that was not seen in untreated wounds, wounds treated with light alone, or wounds treated with conjugate alone. P. aeruginosa was invasive in our mouse model, and all 3 groups of control mice died within 5 days; in contrast, 90% of PDT-treated mice survived. PDT-treated wounds healed significantly faster than did silver nitrate-treated wounds, and this was not due to either inhibition of healing by silver nitrate or stimulation of healing by PDT.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom