Plasmodium falciparum–Infected Erythrocyte Adhesion Induces Caspase Activation and Apoptosis in Human Endothelial Cells
Author(s) -
Paco Pino,
Ioannis Vouldoukis,
Jean Pierre Kolb,
Nassira Mahmoudi,
Isabelle Desportes,
François Bricaire,
Martin Danis,
Bernard Dugas,
Dominique Mazier
Publication year - 2003
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/373992
Subject(s) - plasmodium falciparum , apoptosis , adhesion , microbiology and biotechnology , caspase , caspase 3 , biology , chemistry , virology , immunology , malaria , programmed cell death , biochemistry , organic chemistry
During Plasmodium falciparum infection leading to cerebral malaria, cytokine production and cytoadherence of parasitized erythrocytes (PRBCs) to postcapillary venules are involved. We demonstrate that PRBC adhesion induces apoptosis in human endothelial cells (HLECs). PRBC adhesion modulated HLEC gene expression in tumor necrosis factor-alpha superfamily genes (Fas, Fas L, and DR-6) and apoptosis-related genes (Bad, Bax, caspase-3,SARP 2, DFF45/ICAD, IFN-gamma receptor 2, Bcl-w, Bik, and iNOS). Apoptosis was confirmed by (1) morphological modifications by electron microscopy, (2) annexin V binding, (3) DNA degradation, by measuring intracytoplasmic nucleosomes, and (4) caspase activity. The apoptotic stimulus was physical contact between HLECs and PRBCs and not parasite-secreted molecules. In addition, it was found that cytoplasmic (caspase 8) and mitochondrial (caspase 9) pathways were involved in this process. These data not only describe the direct apoptotic effect of PRBC adhesion on endothelial cells but also provide new useful tools that allow an evaluation of potential pharmaceuticals.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom