z-logo
open-access-imgOpen Access
Human Immunodeficiency Virus (HIV) Proteins in Neuropathogenesis of HIV Dementia
Author(s) -
Avi Nath
Publication year - 2002
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/344528
Subject(s) - neurotoxicity , extracellular , biology , intracellular , immunology , virus , microglia , neurodegeneration , virology , microbiology and biotechnology , neuroscience , medicine , inflammation , disease , toxicity , pathology
Human immunodeficiency virus (HIV) infection of the nervous system is unique when compared with other viral encephalitides. Neuronal cell loss occurs in the absence of neuronal infection. Viral proteins, termed "virotoxins," are released from the infected glial cells that initiate a cascade of positive feedback loops by activating uninfected microglial cells and astrocytes. These activated cells release a variety of toxic substances that result in neuronal dysfunction and cell loss. The virotoxins act by a hit and run phenomenon. Thus, a transient exposure to the proteins initiates the neurotoxic cascade. High concentrations of these proteins likely occur in tight extracellular spaces where they may cause direct neurotoxicity as well. The emerging concepts in viral protein-induced neurotoxicity are reviewed as are the neurotoxic potential of each protein. Future therapeutic strategies must target common mechanisms such as oxidative stress and dysregulation of intracellular calcium involved in virotoxin-mediated neurotoxicity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom