Epigenetic Regulation of T Cell Fate and Function
Author(s) -
Christopher Wilson,
Karen W. Makar,
Mercedes PérezMelgosa
Publication year - 2002
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/338001
Subject(s) - epigenetics , dna methylation , cell fate determination , biology , chromatin , gene , function (biology) , gene expression , regulation of gene expression , genetics , lineage (genetic) , dna , microbiology and biotechnology , transcription factor
During their development, T lymphocytes make sequential cell fate choices: T rather than B lymphocytes, then TCRalphabeta or TCRgammadelta, CD4 or CD8, and Th1 or Th2 lineage. These fate choices require the initiation of new programs of gene expression, and once initiated, these programs must be faithfully propagated in a heritable manner from parental cells to their progeny. With the exception of the T cell receptor, these changes in gene expression occur without a change in information encoded directly in the DNA sequence. Rather, these heritable programs of gene expression are imposed, at least in part, epigenetically through changes in chromatin structure and DNA methylation, allowing T cells to tune the threshold for expression of specific genes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom