z-logo
open-access-imgOpen Access
On the Near‐Infrared Size of Vega
Author(s) -
David R. Ciardi,
Gerald van Belle,
Rachel Akeson,
R. R. Thompson,
Elizabeth A. Lada,
Steve B. Howell
Publication year - 2001
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/322345
Subject(s) - vega , debris disk , debris , physics , astrophysics , atmosphere (unit) , infrared , flux (metallurgy) , circumstellar disk , stellar atmosphere , interferometry , astronomy , stars , planetary system , meteorology , materials science , metallurgy
Near-infrared (2.2 um) long baseline interferometric observations of Vega are presented. The stellar disk of the star has been resolved, and the data have been fitted with a limb darkened stellar disk of diameter Theta_{LD} = 3.28 +/- 0.01 mas. The derived effective temperature is T_eff = 9553 +/- 111 K. However, the residuals resulting from the stellar disk model appear to be significant and display organized structure. Instrumental artifacts, stellar surface structure, stellar atmosphere structure, and extended emission/scattering from the debris disk are discussed as possible sources of the residuals. While the current dataset cannot uniquely determine the origin of the residuals, the debris disk is found to be the most likely source. A simple debris disk model, with 3-6% of Vega's flux emanating from the disk at r < 4 AU, can explain the residuals

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom