z-logo
open-access-imgOpen Access
Differential Expression of Nitric Oxide Synthases in Bacterial Meningitis: Role of the Inducible Isoform for Blood‐Brain Barrier Breakdown
Author(s) -
Frank Winkler,
Uwe Koedel,
Stefan Kastenbauer,
HansWalter Pfister
Publication year - 2001
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/320730
Subject(s) - nitric oxide synthase , nitrotyrosine , nitric oxide , peroxynitrite , enos , blood–brain barrier , biology , tumor necrosis factor alpha , blot , immunology , microbiology and biotechnology , endocrinology , biochemistry , enzyme , central nervous system , superoxide , gene
The aim of the study was to determine the differential expression of nitric oxide (NO) synthase (NOS) isoforms and the pathophysiologic relevance of inducible NOS (iNOS) in experimental pneumococcal meningitis. By use of reverse transcription-polymerase chain reaction analysis, immunohistochemistry, and Western blotting, increased brain mRNA and increased protein levels of endothelial NOS (eNOS) and iNOS were detected 24 h after intracisternal pneumococcal inoculation. In iNOS-deficient mice, disruption of the blood-brain barrier (BBB) was significantly reduced, compared with that in wild-type mice. This beneficial effect of iNOS deficiency was associated with a lack of nitrotyrosine immunoreactivity. Furthermore, brain protein levels of interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha and brain mRNA levels of macrophage inflammatory protein (MIP)-1alpha and MIP-2 were significantly reduced in infected animals lacking iNOS. These findings suggest that (1) not only iNOS but also eNOS is up-regulated in the acute phase of experimental bacterial meningitis, and (2) iNOS-derived NO contributes to peroxynitrite formation and BBB breaching in this disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom