z-logo
open-access-imgOpen Access
Glyphosate Inhibits Melanization ofCryptococcus neoformansand Prolongs Survival of Mice after Systemic Infection
Author(s) -
Joshua D. Nosanchuk,
Rafael Ovalle,
Arturo Casadevall
Publication year - 2001
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/319272
Subject(s) - cryptococcus neoformans , in vivo , glyphosate , microbiology and biotechnology , cryptococcosis , biology , meningoencephalitis , yeast , in vitro , pathogen , biochemistry , immunology
Cryptococcus neoformans is a major fungal pathogen and is a relatively common cause of life-threatening meningoencephalitis. Glyphosate is a widely used herbicide that inhibits the synthesis of aromatic amino acids via the shikimate acid pathway. This study investigated the effects of glyphosate on C. neoformans growth, melanization, and murine infection. C. neoformans was relatively resistant to glyphosate, requiring concentrations >250 microg/mL for inhibition. Melanization of C. neoformans in the presence of L-dopa was inhibited by subinhibitory concentrations of glyphosate. Glyphosate inhibited autopolymerization of L-dopa and oxidation of L-epinephrine by cryptococcal cells, which is mediated by a laccase. Administration of glyphosate to mice infected with C. neoformans delayed melanization of yeast cells in vivo and prolonged average mouse survival. The results suggest that inhibition of melanization in vivo may facilitate control of C. neoformans infection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom