Nonthermal Flare Emission from MeV‐Energy Electrons at 17, 34, and 86 GHz
Author(s) -
M. R. Kundu,
S. M. White,
K. Shibasaki,
Takashi Sakurai
Publication year - 2000
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/317849
Subject(s) - physics , solar flare , millimeter , flare , electron , astrophysics , telescope , wavelength , magnetic field , astronomy , corona (planetary geology) , optics , nuclear physics , quantum mechanics , astrobiology , venus
We present analyses of two solar flares observed with high spatial resolution at 86 GHz with the BIMA millimeter-wavelength telescope and at 17 and 34 GHz with the Nobeyama radioheliograph. The flares were observed on 1998 November 24 and 1999 May 1. At millimeter wavelengths these are impulsive events, and therefore they must be produced by MeV-energy electrons. The present study using simultaneous observations of two flares at 86, 34, and 17 GHz provides an excellent opportunity to study high-energy electrons with high spatial resolution observations at three optically thin frequencies. The morphology of millimeter emission can reveal both the properties of the MeV-energy electrons and the nature of the coronal magnetic field lines where they radiate. One of the two events we present is the first clear case of a λ = 3 mm source in which both footpoints of a loop are detected. In the second event the polarization image at 17 GHz also suggests a bipolar or looplike morphology. Such morphological observations can be used to constrain the nature of the magnetic field in the solar corona.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom