Effects of Dietary n‐3 Fatty Acids on T Cell Activation and T Cell Receptor‐Mediated Signaling in a Murine Model
Author(s) -
David N. McMurray,
Christopher A. Jolly,
Robert S. Chapkin
Publication year - 2000
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/315909
Subject(s) - ionomycin , autocrine signalling , diacylglycerol kinase , t cell , biology , docosahexaenoic acid , t cell receptor , eicosapentaenoic acid , signal transduction , intracellular , cd28 , ceramide , microbiology and biotechnology , endocrinology , receptor , medicine , biochemistry , fatty acid , polyunsaturated fatty acid , immune system , protein kinase c , immunology , apoptosis
A short-term feeding paradigm in mice, with diets enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), was used to study the modulation of T cell activation via the T cell receptor (TcR) and the downstream pathways of intracellular signaling. Diets enriched in EPA and DHA suppressed antigen-specific delayed hypersensitivity reactions and mitogen-induced proliferation of T cells. Cocultures of accessory cells and T cells from mice given different diets revealed that purified fatty acid ethyl esters acted directly on the T cell, rather than through the accessory cell. The loss of proliferative capacity was accompanied by reductions in interleukin (IL)-2 secretion and IL-2 receptor alpha chain mRNA transcription, suggesting that dietary EPA and DHA act, in part, by interrupting the autocrine IL-2 activation pathway. Dietary EPA and DHA blunted the production of intracellular second messengers, including diacylglycerol and ceramide, following mitogen stimulation in vitro. Dietary effects appear to vary with the agonist employed (i.e., anti-CD3 [TcR], anti-CD28, exogenous IL-2, or phorbol myristate acetate and ionomycin).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom