Herpes Simplex Virus DNA Vaccine Efficacy: Effect of Glycoprotein D Plasmid Constructs
Author(s) -
Jane E. Strasser,
Renee L. Arnold,
Catherine J. Pachuk,
Theresa Higgins,
David I. Bernstein
Publication year - 2000
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/315878
Subject(s) - dna vaccination , virology , herpes simplex virus , virus , immunization , vaccination , plasmid , antibody , biology , titer , glycoprotein , dna , medicine , immunology , microbiology and biotechnology , biochemistry
The impact of vaccination with plasmid DNA encoding full-length glycoprotein D (gD) from herpes simplex virus (HSV) type 2 (gD2), secreted gD2, or cytosolic gD2 was evaluated in mice and guinea pigs. Immunization with plasmids encoding full-length gD2 or secreted gD2 produced high antibody levels, whereas immunization with DNA encoding cytosolic gD2 resulted in significantly lower antibody titers in both species (P<.001). Vaccination with DNA encoding full-length or secreted gD2 significantly reduced acute disease in mice and guinea pigs (both P<.001) and subsequent recurrent disease in guinea pigs (P<.05). In guinea pigs, immunization with DNA encoding cytosolic gD2 did not protect from acute or recurrent disease, whereas in mice it did protect, but not as well as DNA encoding full-length or secreted gD2. None of the vaccines resulted in improved virus clearance from the inoculation site, and none significantly reduced recurrent disease when used as a therapeutic vaccine in HSV-2-infected guinea pigs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom