z-logo
open-access-imgOpen Access
The Oxygen‐ and Iron‐Dependent Sigma FactorpvdSofPseudomonas aeruginosaIs an Important Virulence Factor in Experimental Infective Endocarditis
Author(s) -
YanQiong Xiong,
Michael L. Vasil,
Zaiga Johnson,
Urs A. Ochsner,
Arnold S. Bayer
Publication year - 2000
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/315338
Subject(s) - virulence , pseudomonas aeruginosa , microbiology and biotechnology , endocarditis , virulence factor , pseudomonas exotoxin , biology , mutant , sigma factor , bacteria , gene , medicine , gene expression , genetics , promoter
In Pseudomonas aeruginosa, pvdS, a key oxygen (O2)-dependent locus, regulates expression of a number of virulence genes, including toxA (which encodes exotoxin A production). To define the in vivo role of differing O2 tensions on pseudomonal virulence, 2 knockout mutants, DeltapvdS and DeltatoxA, were compared with their parental strain, PA01, in rabbit aortic and tricuspid endocarditis models (representing aerobic vs. microaerobic conditions in vivo, respectively). In aortic endocarditis, DeltapvdS densities were significantly less than those of PA01 in vegetations, kidneys, and spleen (P<.01). In contrast, in tricuspid endocarditis, there were no significant differences between DeltapvdS and PA01 tissue densities in these same target tissues. The DeltatoxA mutant proliferated within target tissues to the same extent as the parental strain. Thus, pvdS (but not toxA) appears to be required for optimal virulence of P. aeruginosa, particularly in tissues preferentially exposed to high O2 tensions (e.g., aortic vegetations).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom