z-logo
open-access-imgOpen Access
BK and JC Viruses in Patients with Systemic Lupus Erythematosus: Prevalent and Persistent BK Viruria, Sequence Stability of the Viral Regulatory Regions, and Nondetectable Viremia
Author(s) -
Arnfinn Sundsfjord,
Awuku Osei,
Hanne Rosenqvist,
Marijke Van Ghelue,
Yngve Silsand,
HansJacob Haga,
Ole Petter Rekvig,
Ugo Moens
Publication year - 1999
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/314830
Subject(s) - viremia , jc virus , bk virus , virology , pathogenesis , immunology , urinary system , virus , biology , medicine , progressive multifocal leukoencephalopathy , kidney , kidney transplantation
A role for polyomaviruses in the pathogenesis of systemic lupus erythematosus (SLE) has been suggested. BK virus (BKV) and JC virus (JCV) were demonstrated in single urine specimens from 7 (16%) of 44 and 5 (11%) of 44 patients with SLE and 0/88 and 18 (21%) of 88 matched healthy controls, respectively. During a 1-year follow-up study, episodes of polyomaviruria were detected in 16 (80%) of 20 patients, BKV in 13, and JCV in 3 patients. A group of 12 (60%) of 20 patients demonstrated persistent or recurrent polyomaviruria, BKV viruria (n=9), or JCV viruria (n=3) in 180 (70%) of 256 specimens. Polyomaviruria was not significantly associated with immunosuppressive therapy. The BKV and JCV isolates revealed predominantly stable archetypal regulatory regions over 3 years, indicating viral persistence rather than reinfection as a cause for urinary shedding. The demonstration of nondetectable viremia and stable archetypal BKV and JCV noncoding control regions during persistent viruria argue against the urinary tract as a focus for the creation of rearranged regulatory region variants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom