The Effects of Aerosolized Dextran in a Mouse Model ofPseudomonas aeruginosaPulmonary Infection
Author(s) -
Ruth Bryan,
Matthew Feldman,
Sheryl C. Jawetz,
Sujatha Rajan,
Emily DiMango,
H. Babette Tang,
Lee Scheffler,
David P. Speert,
Alice Prince
Publication year - 1999
Publication title -
the journal of infectious diseases
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.69
H-Index - 252
eISSN - 1537-6613
pISSN - 0022-1899
DOI - 10.1086/314755
Subject(s) - aerosolization , pseudomonas aeruginosa , microbiology and biotechnology , pulmonary infection , dextran , medicine , immunology , chemistry , biology , bacteria , biochemistry , anesthesia , inhalation , genetics
Airway infections initiated by the interaction of bacterial adhesins with carbohydrate receptors can be potentially prevented by nontoxic carbohydrate inhibitors. Intranasal inoculation of neonatal mice with Pseudomonas aeruginosa PAO1 caused pneumonia in 55% of control mice but in only 13% of mice inoculated 2 h after dextran inhalation (P<.001) and in 28% inoculated 4 h after dextran inhalation (P=.02). PAO1 adherence to epithelial cells was inhibited by 50% in the presence of dextran. Dextran was well distributed throughout the airways and stimulated tumor necrosis factor-alpha production in murine lungs but not interleukin-8 production by human epithelial cell lines. Phagocytosis of PAO1 was not affected by dextran nor was killing by human neutrophils diminished. Administration of dextran by aerosol may prevent murine pneumonia by impeding bacterial access to epithelial receptors and by stimulation of the immune functions of the epithelium.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom