z-logo
open-access-imgOpen Access
The Magellanic Stream and the Density of Coronal Gas in the Galactic Halo
Author(s) -
Chigurupati Murali
Publication year - 2000
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/312462
Subject(s) - halo , astrophysics , galactic halo , physics , galaxy , drag , astronomy , mechanics
The properties of the Magellanic Stream constrain the density of coronal gas in the distant Galactic halo. We show that motion through ambient gas can strongly heat Stream clouds, driving mass loss and causing evaporation. If the ambient gas density is too high, then evaporation occurs on unreasonably short timescales. Since heating dominates drag, tidal stripping appears to be responsible for producing the Stream. Requiring the survival of the cloud MS IV for 500 Myr sets an upper limit on the halo gas density of nh<10-5 cm -3 at 50 kpc, roughly a factor of 10 lower than that estimated from the drag model of Moore & Davis. Implications for models of the evolution of gas in galaxy halos are discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom