Meson Synchrotron Emission from Central Engines of Gamma-Ray Bursts with Strong Magnetic Fields
Author(s) -
Akira Tokuhisa,
Toshitaka Kajino
Publication year - 1999
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/312348
Subject(s) - physics , meson , gamma ray burst , nuclear physics , synchrotron , neutrino , cosmic ray , photon , neutron star , nucleon , particle physics , astrophysics , quantum mechanics
Gamma-ray bursts (GRBs) are presumed to be powered by the still unknown central engines with timescales in the range from 1 ms to approximately a few seconds. We propose that the GRB central engines would be a viable site for strong meson synchrotron emission if they were compact astrophysical objects, such as neutron stars or rotating black holes with extremely strong magnetic fields (H approximately 1012-1017 G), and if protons or heavy nuclei were accelerated to ultrarelativistic energies on the order of approximately 1012-1022 eV. We show that the charged scalar mesons like pi+/- and heavy vector mesons like rho, which have several decay modes onto pi+/-, could be emitted, with a high intensity that is a thousand times larger than photons, through strong couplings to ultrarelativistic nucleons. These meson synchrotron emission processes eventually produce a burst of very high energy cosmic neutrinos with 1012 eV</=Enu. These neutrinos are to be detected during the early-time duration of short GRBs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom