Magnetic Energy Release in Dynamic Fan Reconnection Models
Author(s) -
I. J. D. Craig,
A. N. McClymont
Publication year - 1999
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/306593
Subject(s) - physics , current sheet , magnetic reconnection , solar flare , dissipation , current (fluid) , magnetic energy , plasma , resistive touchscreen , computational physics , nanoflares , mechanics , magnetic field , magnetohydrodynamics , classical mechanics , astrophysics , solar wind , coronal mass ejection , quantum mechanics , electrical engineering , thermodynamics , magnetization , engineering
The problem of dynamic, three-dimensional magnetic reconnection is considered. Analytic “fan current” solutions are derived by superposing plane-wave disturbances on magnetic X-point equilibria. The localization of the wave produces a strong current sheet containing the neutral point. It is shown that the classical rate of resistive dissipation in the sheet, namely Wn~n1/2, represents the slowest possible energy-loss rate for the disturbance. The conditions required for fast coronal reconnection are then discussed. It is pointed out that significant “flare-like” energy release may be possible under physically realizable conditions. Moreover, the small length scales associated with the current sheet widths of order ∆x~n1/2 suggest that conditions are probably collisionless close to the neutral point. It is argued that our results are consistent with magnetic reconnection simulations that display “stalling” of the merging rate at small plasma resistivities
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom