Nonlinear development of the kink instability in coronal flux tubes
Author(s) -
I. J. D. Craig,
A. D. Sneyd
Publication year - 1990
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/168954
Subject(s) - physics , magnetohydrodynamics , instability , coronal loop , magnetic flux , magnetic reconnection , kink instability , flux tube , corona (planetary geology) , solar flare , coronal mass ejection , magnetohydrodynamic drive , magnetic field , flux (metallurgy) , astrophysics , computational physics , mechanics , solar wind , quantum mechanics , materials science , astrobiology , venus , metallurgy
Solar prominences and flares are believed to be caused by rapid release of magnetic energy stored in coronal magnetic fields. Recent studies of the linear phase of ideal MHD instabilities has shown that energy release is slow and weak, so it is therefore important to study the nonlinear phase to see if this provides a mechanism for significant energy release. In this paper we describe a Lagrangian numerical scheme for simulating nonlinear evolution of ideal MHD equilibria and apply it to an unstable finite Gold-Hoyle flux tube, line-tied to perfectly conducting endplates. The ensuing kink instability develops considerably faster than linear theory would predict, and eventually (over typically 100 Alfvén time scales) a new kinked equilibrium is attained, in which current sheets appear to be present. Little magnetic energy is lost in the ideal MHD phase, but resistive instabilities in the current sheets could lead to much more explosive energy release. Numerical studies of nonlinear interactions indicate that growth of the unstable kink mode is suppressed by the presence of other modes, which offers a possible explanation of the observed longevity of coronal loops
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom