
Gravitational instability in a primordial collapsing gas cloud
Author(s) -
Cedric G. Lacey
Publication year - 1989
Publication title -
astrophysical journal/the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/167039
Subject(s) - physics , gravitational collapse , perturbation (astronomy) , classical mechanics , instability , barotropic fluid , anisotropy , gravitational field , galaxy , astrophysics , gravitational potential , gravitation , mechanics , shearing (physics) , circular symmetry , astronomy , quantum mechanics , thermodynamics
This paper presents an analysis of the linear evolution of short-wavelength perturbations in a background fluid flow which is undergoing gravitational collapse on large scales. Local evolution equations for perturbations to an arbitrary flow are derived in the linear regime and the short-wavelength limit. Local perturbation behavior in an inhomogeneous flow is found to be the same as that in a homogeneous anisotropic flow having the same local velocity field. Background flows in which the scale factors vary as power laws in time are considered to illustrate the relative effects of self-gravity, pressure and kinematics of the background flow on the density perturbation evolution. Perturbation analyses are then presented for more realistic background flows arising from the evolution into the nonlinear regime of initially small density perturbations in an isotropically expanding cosmological model. For low-pressure, inhomogeneous collapses, kinematic effects tend to dominate over self-gravity in driving perturbation growth as the collapse proceeds