z-logo
open-access-imgOpen Access
Heating of the solar corona by the resonant absorption of Alfven waves
Author(s) -
J. M. Davila
Publication year - 1987
Publication title -
the astrophysical journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.376
H-Index - 489
eISSN - 1538-4357
pISSN - 0004-637X
DOI - 10.1086/165295
Subject(s) - physics , dissipative system , alfvén wave , corona (planetary geology) , computational physics , coronal loop , absorption (acoustics) , plasma , magnetohydrodynamic drive , resonance (particle physics) , solar wind , scale height , astrophysics , magnetohydrodynamics , coronal mass ejection , optics , atomic physics , quantum mechanics , astrobiology , venus
An improved method for calculating the resonance absorption heating rate is discussed and the results are compared with observations in the solar corona. To accomplish this, the wave equation for a dissipative, compressible plasma is derived from the linearized magnetohydrodynamic equations for a plasma with transverse Alfven speed gradients. For parameters representative of the solar corona, it is found that a two-scale description of the wave motion is appropriate. The large-scale motion, which can be approximated as nearly ideal, has a scale which is on the order of the width of the loop. The small-scale wave, however, has a transverse scale much smaller than the width of the loop, with a width of about 0.3-250 km, and is highly dissipative. These two wave motions are coupled in a narrow resonance region in the loop where the global wave frequency equals the local Alfven wave frequency. Formally, this coupling comes about from using the method of matched asymptotic expansions to match the inner and outer (small and large scale) solutions. The resultant heating rate can be calculated from either of these solutions. A formula derived using the outer (ideal) solution is presented, and shown to be consistent with observations of heatingmore » and line broadening in the solar corona. 34 references.« less

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom