z-logo
open-access-imgOpen Access
Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo
Author(s) -
Mahesh Yadav,
Cédric Louvet,
Dan Davini,
James M. Gardner,
Marc MartínezLlordella,
Samantha L. Bailey-Bucktrout,
Bryan A. Anthony,
Francis M. Sverdrup,
Richard D. Head,
Daniel J. Kuster,
Peter Ruminski,
David J. Weiss,
David von Schack,
Jeffrey A. Bluestone
Publication year - 2012
Publication title -
the journal of experimental medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 8.483
H-Index - 448
eISSN - 1540-9538
pISSN - 0022-1007
DOI - 10.1084/jem.20120822
Subject(s) - foxp3 , natural killer t cell , biology , microbiology and biotechnology , cytotoxic t cell , interleukin 21 , il 2 receptor , antigen , t cell , antigen presenting cell , immunology , cd40 , autoimmunity , immune system , in vitro , genetics
Foxp3(+) CD4(+) T helper cells called regulatory T (T reg) cells play a key role in controlling reactivity to self-antigens and onset of autoimmunity. T reg cells either arise in thymus and are called natural T reg (nT reg) cells or are generated in the periphery through induction of Foxp3 and are called inducible T reg (iT reg) cells. The relative contributions of iT reg cells and nT reg cells in peripheral tolerance remain unclear as a result of an inability to separate these two subsets of T reg cells. Using a combination of novel TCR transgenic mice with a defined self-antigen specificity and conventional mouse models, we demonstrate that a cell surface molecule, neuropilin-1 (Nrp-1), is expressed at high levels on nT reg cells and can be used to separate nT reg versus iT reg cells in certain physiological settings. In addition, iT reg cells generated through antigen delivery or converted under homeostatic conditions lack Nrp-1 expression. Nrp-1(lo) iT reg cells show similar suppressive activity to nT reg cells in controlling ongoing autoimmune responses under homeostatic conditions. In contrast, their activity might be compromised in certain lymphopenic settings. Collectively, our data show that Nrp-1 provides an excellent marker to distinguish distinct T reg subsets and will be useful in studying the role of nT reg versus iT reg cells in different disease settings.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom