ELECTRON MICROSCOPY OF OSTEOCLASTS IN HEALING FRACTURES OF RAT BONE
Author(s) -
Federico Gonzales,
Morris J. Karnovsky
Publication year - 1961
Publication title -
the journal of cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.414
H-Index - 380
eISSN - 1540-8140
pISSN - 0021-9525
DOI - 10.1083/jcb.9.2.299
Subject(s) - endoplasmic reticulum , electron microscope , vacuole , bone cell , anatomy , golgi apparatus , ultrastructure , biology , multinucleate , osteocyte , osteoclast , resorption , bone healing , microbiology and biotechnology , osteoblast , cytoplasm , optics , biochemistry , physics , endocrinology , in vitro
Osmium-fixed, undecalcified, callus tissue from healing fractures of rat tibias was sectioned with a diamond knife for study with the electron microscope. Large multinucleated cells were found adjacent to bone. A characteristic labyrinthine infolded border was consistently seen in parts of the cells close to the bone surface. The innermost parts of this "ruffled border" gave rise to vacuoles. The bone surface was always disrupted under the "ruffled border" of the cells. Needle-like crystals were seen at the osseous fringe, within folds in the ruffled border as well as within vacuoles deeper in the cells. Collagen fibers denuded of crystals were never observed. Mitochondria, containing clusters of fine granules, were abundant. The part of the cell away from bone contained rough endoplasmic reticulum and the cell membrane was thrown into irregular microvilli. These observations are discussed in relation to current concepts of osteoclastic resorption of bone.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom