z-logo
open-access-imgOpen Access
Electron Microscope Studies of Nuclear Extrusions in Pancreatic Acinar Cells of the Rat
Author(s) -
Wallace H. Clark
Publication year - 1960
Publication title -
the journal of cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.414
H-Index - 380
eISSN - 1540-8140
pISSN - 0021-9525
DOI - 10.1083/jcb.7.2.345
Subject(s) - bleb (medicine) , cytoplasm , nucleolus , biology , vesicle , nuclear membrane , golgi apparatus , nucleus , microbiology and biotechnology , electron microscope , cell nucleus , biophysics , protoplasm , membrane , endoplasmic reticulum , biochemistry , optics , physics , glaucoma , trabeculectomy , neuroscience
This paper describes "blebs" protruding from the surface of the nucleus into the cytoplasm. The "blebs" are separated from the cytoplasm by 2 membranes which are continuous with the outer and inner nuclear membranes. The "blebs" contain 3 structurally distinct substances. Two of these substances (ß and γ substances) are similar to extranucleolar karyoplasm and nucleolar material. The other substance (α substance) is present in every "bleb," but it cannot be readily compared to a recognizable nuclear structure. Cytoplasmic vesicles are described that are apparently different from the Golgi vesicles or the vesicular component of the ergastoplasm. It is suggested that these vesicles may be of nuclear "bleb" origin. A dark karyoplasmic zone extending from the region of the nucleolus into the nuclear "bleb" is shown. This zone may be similar in some respects to the preformed pathway ("Leitbahn") described by Altmann (3) and Hertl (28) and could reflect movement of nuclear material from the nucleolar region into the cytoplasm. The "blebs" are thought to be homologous to structures described by many light microscopists, but they are considerably larger than the nuclear "blebs" described previously by electron microscopists.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom