A Cytochemical Study of the Sulfhydryl Groups of Sea Urchin Eggs during the First Cleavage
Author(s) -
Naoko Kawamura,
Katsuma Dan
Publication year - 1958
Publication title -
the journal of cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.414
H-Index - 380
eISSN - 1540-8140
pISSN - 0021-9525
DOI - 10.1083/jcb.4.5.615
Subject(s) - biology , hemicentrotus , sea urchin , cytoplasm , cleavage (geology) , microbiology and biotechnology , mitosis , advanced spaceborne thermal emission and reflection radiometer , spindle apparatus , human fertilization , cleavage furrow , anatomy , cell , cell division , biochemistry , cytokinesis , satellite , paleontology , aerospace engineering , fracture (geology) , engineering
In the eggs of four species of echinoderms, Mespilia globulus, Pseudocentrotus depressus, Hemicentrotus pulcherrimus and Clypeaster japonicus, changes in the distribution of protein-bound SH groups from fertilization to the 2 cell stage have been studied cytochemically by use of a mercaptide-forming azo dye. In the eggs of these species, the color intensity in the cytoplasm increased upon fertilization. The astral centers and spindle during mitosis were stained deeply. When the aster formation was suppressed by ether, hyaline spots appeared in the egg cytoplasm instead of well formed astral centers and these spots were stained by the SH-specific dye. Upon recovery of such eggs in pure sea water, and when cleavage ensued, such spots disappeared and two new astral centers were reorganized. The SH-protein occurring in the centrosphere is considered to be the precursor material for the asters and spindle, and this material is apparently derived from the cytoplasm.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom