EFFECT OF GAMMA IRRADIATION ON THE DESOXYRIBONUCLEASE II ACTIVITY OF ISOLATED MITOCHONDRIA
Author(s) -
Shigefumi Okada,
Lee D. Peachey
Publication year - 1957
Publication title -
the journal of cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.414
H-Index - 380
eISSN - 1540-8140
pISSN - 0021-9525
DOI - 10.1083/jcb.3.2.239
Subject(s) - mitochondrion , biology , biochemistry , enzyme , cytosol , deoxyribonucleases , ionizing radiation , biophysics , irradiation , microbiology and biotechnology , physics , nuclear physics
1. Exposure of isolated liver mitochondria to high doses of gamma rays from a Co(60) source causes the level of DNase II activity to increase. Treatment of the mitochondria with sonic vibration causes a further elevation of the activity to a level which is independent of the prior radiation dose. 2. Such increased mitochondrial DNase II activity appears to be due to the "structural damage" of the subcellular particulates caused by the ionizing radiation. Other methods of disrupting the mitochondrial structure also cause increased DNase II activity. A causal relationship between the structural alteration and the increased enzymatic activity is postulated. 3. The DNase II activity appears to be closely associated with the structural elements of the mitochondria and remains associated with the fragments after irradiation. 4. Upon irradiation, the mitochondrial suspension releases ultraviolet-absorbing materials which are probably nucleotide in nature. 5. The possibility of localization of DNase activity in the lysosome fraction of de Duve (15) is discussed. It is felt that DNase II is at least in part a mitochondrial enzyme and that probably the conclusions drawn here would be applicable to any DNase II present in the lysosomes as well. 6. Irradiation of whole liver homogenate causes no increased DNase II activity. The experiments do not provide any information on the presence or action of protective substances in the homogenate.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom