Sharon Dent: The unfolding SAGA of chromatin-modifying proteins
Author(s) -
Caitlin Sedwick
Publication year - 2016
Publication title -
the journal of cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.414
H-Index - 380
eISSN - 1540-8140
pISSN - 0021-9525
DOI - 10.1083/jcb.2121pi
Subject(s) - biology , chromatin , computational biology , microbiology and biotechnology , genetics , dna
Histone modifications come in many flavors—phosphorylation, methylation, acetylation, and ubiquitination—that interact with each other to regulate the folding state of chromatin, with profound effects on gene expression. For example, histone acetylation reduces the affinity of histone N termini for DNA, promoting chromatin relaxation and allowing transcription factors easy access to DNA. Such modifications are essential for regulating the changes to genome organization and gene expression that take place during organismal development and cellular differentiation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom