z-logo
open-access-imgOpen Access
THE INTRACELLULAR DISTRIBUTION AND HETEROGENEITY OF RIBONUCLEIC ACID IN STARFISH OOCYTES
Author(s) -
JanErik Edström,
W. Grampp,
Norberto A. Schor
Publication year - 1961
Publication title -
the journal of cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.414
H-Index - 380
eISSN - 1540-8140
pISSN - 0021-9525
DOI - 10.1083/jcb.11.3.549
Subject(s) - rna , biology , uracil , nucleolus , nucleoplasm , ribosomal rna , cytoplasm , guanine , microbiology and biotechnology , cytosine , biochemistry , dna , nucleotide , gene
A study has been made of the content and composition of RNA in cytoplasm, nucleoplasm, and nucleoli from growing oocytes of the starfish Asterias rubens. The determinations were carried out, using ultramicrochemical methods, on units isolated by microdissection from fixed sections. Macrochemical and interferometric control experiments show that RNA can be quantitatively evaluated in this way. The results show that the growing oocyte represents a system in which the relations between the quantities of nucleolar, nucleoplasmic, and cytoplasmic RNA undergo great changes. These changes are continuous for nucleolar and cytoplasmic RNA so that their amounts may be predicted from the size of the cell. Nucleoplasmic RNA, on the other hand, shows great variations among different cells, independent of cell size. Purine-pyrimidine analyses show that each cell component contains an RNA which differs significantly from that of the other two. Cytoplasmic and nucleolar RNA are closely related, the only difference being a slightly higher guanine/uracil quotient for the nucleolar RNA. They are both of the usual tissue RNA type, i.e., they show a preponderance of guanine and cytosine over adenine and uracil. Nucleoplasmic RNA deviates grossly from the RNA of the other two components. Here the concentrations of adenine and uracil are higher than those of guanine and cytosine, respectively. This RNA consequently shows some resemblance to the general type of animal DNA although the purine/pyrimidine ratio is far from unity. Our data favor a nucleolar origin for the stable part of the ribosomal RNA and a nucleoplasmic one for the unstable part (the messenger RNA).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom