
Caspase activation: The induced-proximity model
Author(s) -
Guy S. Salvesen,
Vishva M. Dixit
Publication year - 1999
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.96.20.10964
Subject(s) - caspase , proteases , microbiology and biotechnology , apoptosis , protease , xiap , intrinsic apoptosis , chemistry , signal transduction , caspase 8 , programmed cell death , biology , biochemistry , enzyme
Members of the caspase family of proteases transmit the events that lead to apoptosis of animal cells. Distinct members of the family are involved in both the initiation and execution phases of cell death, with the initiator caspases being recruited to multicomponent signaling complexes. Initiation of apoptotic events depends on the ability of the signaling complexes to generate an active protease. The mechanism of activation of the caspases that constitute the different apoptosis-signaling complexes can be explained by an unusual property of the caspase zymogens to autoprocess to an active form. This autoprocessing depends on intrinsic activity that resides in the zymogens of the initiator caspases. We review evidence for a hypothesis—the induced-proximity model—that describes how the first proteolytic signal is produced after adapter-mediated clustering of initiator caspase zymogens.