
A G sα mutant designed to inhibit receptor signaling through G s
Author(s) -
Taroh Iiri,
Sean Bell,
Thomas J. Baranski,
Toshiro Fujita,
Henry R. Bourne
Publication year - 1999
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.96.2.499
Subject(s) - adenylyl cyclase , g protein , g alpha subunit , gs alpha subunit , mutant , biology , gtp binding protein regulators , microbiology and biotechnology , protein subunit , signal transduction , receptor , alpha (finance) , heterotrimeric g protein , gtp' , gi alpha subunit , g protein coupled receptor , biochemistry , gene , enzyme , medicine , construct validity , nursing , patient satisfaction
Hormonal signals activate trimeric G proteins by substituting GTP for GDP bound to the G protein alpha subunit (Galpha), thereby generating two potential signaling molecules, Galpha-GTP and free Gbetagamma. The usefulness of dominant negative mutations for investigating Ras and other monomeric G proteins inspired us to create a functionally analogous dominant negative Galpha mutation. Here we describe a mutant alpha subunit designed to inhibit receptor-mediated hormonal activation of Gs, the stimulatory regulator of adenylyl cyclase. To construct this mutant, we introduced into the alpha subunit (alphas) of Gs three separate mutations chosen because they impair alphas function in complementary ways: the A366S mutant reduces affinity of alphas for binding GDP, whereas the G226A and E268A mutations impair the protein's ability to bind GTP and to assume an active conformation. The triple mutant robustly inhibits (by up to 80%) Gs-dependent hormonal stimulation of adenylyl cyclase in cultured cells. Inhibition is selective in that it does not affect cellular responses to expression of a constitutively active alphas mutant (alphas-R201C) or to agonists for receptors that activate Gq or Gi. This alphas triple mutant and cognate Galpha mutants should provide specific tools for dissection of G protein-mediated signals in cultured cells and transgenic animals.