
Dynamics of different functional parts of bacteriorhodopsin: H- 2 H labeling and neutron scattering
Author(s) -
Valérie Réat,
Heiko Patzelt,
Michel Ferrand,
Claude Pfister,
Dieter Oesterhelt,
Giuseppe Zaccaı̈
Publication year - 1998
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.95.9.4970
Subject(s) - bacteriorhodopsin , chemistry , neutron scattering , protein dynamics , halorhodopsin , halobacterium salinarum , crystallography , deuterium , chemical physics , neutron , molecular dynamics , membrane , physics , atomic physics , computational chemistry , biochemistry , quantum mechanics
We show that dynamics of specific amino acids within a protein can be characterized by neutron spectroscopy and hydrogen-deuterium labeling, and we present data on the motions of a selected set of groups within bacteriorhodopsin (BR), the retinal-based proton pump in the purple membrane of halophilic Archaea. Elastic incoherent neutron scattering experiments allow the definition of motions in the nano- to picosecond time scale and have revealed a dynamical transition from a harmonic to a softer, anharmonic atomic fluctuation regime in the global behavior of proteins. Biological activity in proteins is correlated with this transition, suggesting that flexibility is required for function. Elastic incoherent neutron scattering is dominated by H atom scattering, and to study the dynamics of a selected part of BR, fully deuterated purple membrane with BR containing H-retinal, H-tryptophan, and H-methionine was prepared biosynthetically in Halobacterium salinarum. These amino acids cluster in the functional center of the protein. In contrast to the protein globally, the thermal motions of the labeled atoms were found to be shielded from solvent melting effects at 260 K. Above this temperature, the labeled groups appear as more rigid than the rest of the protein, with a significantly smaller mean square amplitude of motion. These experimental results quantify the dynamical heterogeneity of BR (which meets the functional requirements of global flexibility), on the one hand, to allow large conformational changes in the molecule and of a more rigid region in the protein, on the other, to control stereo-specific selection of retinal conformations.