
Altered regulation of platelet-derived growth factor receptor-α gene-transcription in vitro by spina bifida-associated mutant Pax1 proteins
Author(s) -
Paul H. L. J. Joosten,
F.A. Hol,
Sylvia E. C. van Beersum,
Heiko Peters,
B.C.J. Hamel,
Gijs Afink,
E.J.J. van Zoelen,
E.C.M. Mariman
Publication year - 1998
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.95.24.14459
Subject(s) - mutant , biology , mutation , transcription factor , gene , ectopic expression , microbiology and biotechnology , genetics , cancer research
Mouse models show that congenital neural tube defects (NTDs) can occur as a result of mutations in the platelet-derived growth factor receptor-alpha gene (PDGFRalpha). Mice heterozygous for the PDGFRalpha-mutation Patch, and at the same time homozygous for the undulated mutation in the Pax1 gene, exhibit a high incidence of lumbar spina bifida occulta, suggesting a functional relation between PDGFRalpha and Pax1. Using the human PDGFRalpha promoter linked to a luciferase reporter, we show in the present paper that Pax1 acts as a transcriptional activator of the PDGFRalpha gene in differentiated Tera-2 human embryonal carcinoma cells. Two mutant Pax1 proteins carrying either the undulated-mutation or the Gln --> His mutation previously identified by us in the PAX1 gene of a patient with spina bifida, were not or less effective, respectively. Surprisingly, Pax1 mutant proteins appear to have opposing transcriptional activities in undifferentiated Tera-2 cells as well as in the U-2 OS osteosarcoma cell line. In these cells, the mutant Pax1 proteins enhance PDGFRalpha-promoter activity whereas the wild-type protein does not. The apparent up-regulation of PDGFRalpha expression in these cells clearly demonstrates a gain-of-function phenomenon associated with mutations in Pax genes. The altered transcriptional activation properties correlate with altered protein-DNA interaction in band-shift assays. Our data provide additional evidence that mutations in Pax1 can act as a risk factor for NTDs and suggest that the PDGFRalpha gene is a direct target of Pax1. In addition, the results support the hypothesis that deregulated PDGFRalpha expression may be causally related to NTDs.