z-logo
open-access-imgOpen Access
Bcl-xLcan inhibit apoptosis in cells that have undergone Fas-induced protease activation
Author(s) -
Lawrence H. Boise,
Craig B. Thompson
Publication year - 1997
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.94.8.3759
Subject(s) - poly adp ribose polymerase , apoptosis , programmed cell death , jurkat cells , protease , microbiology and biotechnology , biology , proteases , chemistry , enzyme , biochemistry , t cell , polymerase , immunology , immune system
Programmed cell death or apoptosis provides an irreversible mechanism for the elimination of excess or damaged cells. Several recent studies have implicated the activation of the interleukin 1beta-converting enzyme/Ced-3 (ICE/Ced-3) family of proteases as the "point of no return" in apoptotic cell death, while others have suggested that loss of mitochondrial membrane potential (delta psi(m)) is the ultimate determinant of cell death. The temporal relationship of these two events during apoptosis and the role of Bcl-2 proteins in inhibiting these steps has not been defined. To examine these issues, control and Bcl-x(L)-transfected Jurkat T cells were treated with Fas antibodies in the presence and absence of the ICE protease inhibitor zVAD-FMK. ICE/Ced-3 protease activity was monitored by following the cleavage of poly(ADP-ribose) polymerase (PARP) and delta psi(m) was followed by rhodamine 123 fluorescence. Although Bcl-x(L) expression did not block Fas-induced protease activation, it substantially inhibited the subsequent loss of delta psi(m) and cell death in Fas-treated cells. In contrast, zVAD-FMK blocked PARP cleavage as well as loss of delta psi(m) and cell death. Together these data demonstrate that Bcl-x(L) can maintain cell viability by preventing the loss of mitochondrial membrane potential that occurs as a consequence of ICE/Ced-3 protease activation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here