
Guanylyl cyclase expression in specific sensory neurons: A new family of chemosensory receptors
Author(s) -
Sidney Yu,
Leon Avery,
Eric J. Baude,
David L. Garbers
Publication year - 1997
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.94.7.3384
Subject(s) - receptor , biology , transmembrane domain , microbiology and biotechnology , cyclase , transmembrane protein , g protein coupled receptor , complementary dna , caenorhabditis elegans , fusion protein , biochemistry , gene , recombinant dna
A guanylyl cyclase (GC-D) was recently shown to be expressed in a subclass of neurons within the neuroepithelim of the rat, but given that only a single cyclase was discovered, whether it represents an odorant/pheromone receptor as has been suggested for the large family of seven-transmembrane receptors remains unclear. Through cloning and expression of cDNA we now demonstrate that at least 29 genomic or cDNA sequences found inCaenorhabditis elegans represent guanylyl cyclases. Many of the membrane forms retain cysteine residues conserved within the extracellular, ligand-binding domain of known cyclase receptors. Of eight orphan cyclase receptor::GFP (green fluroescence protein) fusion constructs for which signals were obtained, all were expressed in specific sensory neurons. Furthermore, a cyclase/GFP fusion protein (GCY-10/GFP) was principally expressed in the sensory cilium, suggesting these cyclases function as primary chemosensory receptors. For the first time, we also found that chemosensory neurons (ASE), known to be bilaterally symmetric, demonstrate absolute right or left sidedness with respect to the expression of three different cyclases. Thus, the guanylyl cyclases represent an unexpectedly large and new family of sensory neuron receptors that may complement the 7-transmembrane family of odorant/pheromone receptors.