z-logo
open-access-imgOpen Access
Two forms of replication initiator protein: Positive and negative controls
Author(s) -
Jiazhen Wu,
Marian Sęktas,
Dongzhao Chen,
Marcin Filutowicz
Publication year - 1997
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.94.25.13967
Subject(s) - leucine zipper , biology , gene , ter protein , plasmid , in vitro , transcription (linguistics) , seqa protein domain , microbiology and biotechnology , genetics , transcription factor , origin of replication , linguistics , philosophy
The pir gene of plasmid R6K encodes the protein, pi, a replication and transcription factor. Two translational options for the pir gene give rise to two forms of pi protein: a 35.0-kDa form (pi35.0) and a shortened 30.5-kDa form (pi30.5). Although both proteins bind to a series of 22-bp direct repeats essential for plasmid R6K replication, only pi35.0 can bind to a site in the (A.T)-rich segment of its gamma ori and activate the gamma ori in vivo and in vitro. However, unlike pi35.0, pi30.5can inhibit in vivo and in vitro replication (activated by pi35.0). We propose that the two forms of pi might have distinct functions in replication. We show that although both forms of pi produce dimers, the nature of these dimers is not identical. The N-terminal 37 amino acid residues appear to control the formation of the more stable pi35.0 dimers, whereas another, apparently weaker interface holds together dimers of pi30.5. We speculate that the leucine zipper-like motif, absent in pi30.5, controls very specific functions of pi protein.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here