z-logo
open-access-imgOpen Access
Regulation of the human ether-a-gogo related gene (HERG) K+channels by reactive oxygen species
Author(s) -
Maurizio Taglialatela,
Pasqualina Castaldo,
Susanna Iossa,
Anna Pannaccione,
Angela Fresi,
Eckhard Ficker,
Lucio Annunziato
Publication year - 1997
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.94.21.11698
Subject(s) - herg , reactive oxygen species , chemistry , catalase , superoxide dismutase , biophysics , depolarization , xenopus , potassium channel , biochemistry , oxidative stress , biology , gene
Human ether-a-gogo related gene (HERG) K+ channels are key elements in the control of cell excitability in both the cardiovascular and the central nervous systems. For this reason, the possible modulation by reactive oxygen species (ROS) of HERG and other cloned K+ channels expressed inXenopus oocytes has been explored in the present study. Exposure ofXenopus oocytes to an extracellular solution containing FeSO4 (25–100 μM) and ascorbic acid (50–200 μM) (Fe/Asc) increased both malondialdehyde content and 2′,7′-dichlorofluorescin fluorescence, two indexes of ROS production. Oocyte perfusion with Fe/Asc caused a 50% increase of the outward K+ currents carried by HERG channels, whereas inward currents were not modified. This ROS-induced increase in HERG outward K+ currents was due to a depolarizing shift of the voltage-dependence of channel inactivation, with no change in channel activation. No effect of Fe/Asc was observed on the expressed K+ currents carried by other K+ channels such as bEAG, rDRK1, and mIRK1. Fe/Asc-induced stimulation of HERG outward currents was completely prevented by perfusion of the oocytes with a ROS scavenger mixture (containing 1,000 units/ml catalase, 200 ng/ml superoxide dismutase, and 2 mM mannitol). Furthermore, the scavenger mixture also was able to reduce HERG outward currents in resting conditions by 30%, an effect mimicked by catalase alone. In conclusion, the present results seem to suggest that changes in ROS production can specifically influence K+ currents carried by the HERG channels.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here