
In vivo selection of basic region-leucine zipper proteins with altered DNA-binding specificities.
Author(s) -
Takashi Sera,
Peter G. Schultz
Publication year - 1996
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.93.7.2920
Subject(s) - leucine zipper , mutant , biology , palindromic sequence , dna , bzip domain , transcription factor , dna binding protein , dna binding site , microbiology and biotechnology , genetics , gene , promoter , gene expression , palindrome , crispr
A transcription interference assay was used to generate mutant basic region-leucine zipper proteins with altered DNA-binding specificities. A library of mutants of a CCAAT/enhancer binding protein was constructed by randomizing five DNA-contacting amino acids in the basic region Asn-18, Ala-15, Val-14, Ser-11, and Arg-10. These mutants were then selected for their ability to bind mutant recognition sequences containing substitutions at the 2 and 3 positions of the wild-type sequence 5'-A5T4T3G2C1G1'C2'A3A4'T5'-3'. Mutants containing the sequence Leu-18Tyr-15Xaa-14Tyr-11Arg-10, in which four of the five contact residues are altered, were identified that recognize the palindromic sequence 5'-ATCYCGY'GAT-3' (Xaa = asparagine when Y = G; Xaa = methionine when Y = A). Moreover, in a selection against the sequence 5'-ATTACGTAAT-3', mutants were obtained containing substitutions not only in the basic region but also in the hinge region between the basic and leucine zipper regions. The mutant proteins showed high specificity in a functional transcription interference assay. A model for the interaction of these mutants with the target DNA sequences is discussed.