z-logo
open-access-imgOpen Access
Increased accommodation of nascent RNA in a product site on RNA polymerase II during arrest.
Author(s) -
Weigang Gu,
Megan Wind,
Daniel Reines
Publication year - 1996
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.93.14.6935
Subject(s) - termination factor , rna , rna polymerase i , rna dependent rna polymerase , polymerase , rna polymerase , small nuclear rna , biology , microbiology and biotechnology , rna editing , rna polymerase ii , biochemistry , dna , gene expression , gene , promoter
RNA polymerases encounter specific DNA sites at which RNA chain elongation takes place in the absence of enzyme translocation in a process called discontinuous elongation. For RNA polymerase II, at least some of these sequences also provoke transcriptional arrest where renewed RNA polymerization requires elongation factor SII. Recent elongation models suggest the occupancy of a site within RNA polymerase that accommodates nascent RNA during discontinuous elongation. Here we have probed the extent of nascent RNA extruded from RNA polymerase II as it approaches, encounters, and departs an arrest site. Just upstream of an arrest site, 17-19 nucleotides of the RNA 3'-end are protected from exhaustive digestion by exogenous ribonuclease probes. As RNA is elongated to the arrest site, the enzyme does not translocate and the protected RNA becomes correspondingly larger, up to 27 nucleotides in length. After the enzyme passes the arrest site, the protected RNA is again the 18-nucleotide species typical of an elongation-competent complex. These findings identify an extended RNA product groove in arrested RNA polymerase II that is probably identical to that emptied during SII-activated RNA cleavage, a process required for the resumption of elongation. Unlike Escherichia coli RNA polymerase at a terminator, arrested RNA polymerase II does not release its RNA but can reestablish the normal elongation mode downstream of an arrest site. Discontinuous elongation probably represents a structural change that precedes, but may not be sufficient for, arrest by RNA polymerase II.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here