
Hepatitis B virus transactivator protein X interacts with the TATA-binding protein.
Author(s) -
Ishtiaq Qadri,
Hugh Maguire,
Aleem Siddiqui
Publication year - 1995
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.92.4.1003
Subject(s) - tata binding protein , transactivation , biology , tata box binding protein , transcription factor , transcription preinitiation complex , transcription (linguistics) , binding site , tata box , general transcription factor , microbiology and biotechnology , dna binding protein , promoter , genetics , gene , gene expression , linguistics , philosophy
Several viral transcriptional activators have been shown to interact with the basal transcription factor TATA-binding protein (TBP). These associations have been implicated in facilitating the assembly of the transcriptional preinitiation complex. We report here that the hepatitis B virus protein X (pX) specifically binds to TBP in vitro. While truncations of the highly conserved carboxyl terminus of TBP abolished this binding, amino-terminal deletions had no effect. Deletion analysis suggests that a domain consisting of 71 aa in the highly conserved carboxyl-terminal region of TBP is necessary for its interaction with pX. The minimal region in pX sufficient for its interaction with TBP includes aa 110-143. Furthermore, TBP from phylogenetically distinct species including Arabidopsis thaliana, Saccharomyces cerevisiae, Drosophila melanogaster, and Solanum tuberosum (potato) bound to pX. The pX-TBP interaction was inhibited in the presence of nonhydrolyzable analogs of ATP, suggesting a requirement for ATP. These results provide an explanation for the promiscuous behavior of pX in the transactivation of a large repertoire of cellular promoters. This study further implicates a fundamental role for pX in modulating transcriptional regulatory pathways by interacting with the basal transcription factor TBP.