z-logo
open-access-imgOpen Access
Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-I.
Author(s) -
Raymond Evers,
Ingrid Grummt
Publication year - 1995
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.92.13.5827
Subject(s) - biology , terminator (solar) , transcription (linguistics) , gene , microbiology and biotechnology , dna , transcription factor , genetics , ionosphere , philosophy , linguistics , physics , astronomy
Both the DNA elements and the nuclear factors that direct termination of ribosomal gene transcription exhibit species-specific differences. Even between mammals--e.g., human and mouse--the termination signals are not identical and the respective transcription termination factors (TTFs) which bind to the terminator sequence are not fully interchangeable. To elucidate the molecular basis for this species-specificity, we have cloned TTF-I from human and mouse cells and compared their structural and functional properties. Recombinant TTF-I exhibits species-specific DNA binding and terminates transcription both in cell-free transcription assays and in transfection experiments. Chimeric constructs of mouse TTF-I and human TTF-I reveal that the major determinant for species-specific DNA binding resides within the C terminus of TTF-I. Replacing 31 C-terminal amino acids of mouse TTF-I with the homologous human sequences relaxes the DNA-binding specificity and, as a consequence, allows the chimeric factor to bind the human terminator sequence and to specifically stop rDNA transcription.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here